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Abstract

The diffusion process near low order synchro-betatron resonances driven by beam-
beam interactions at a crossing angle is investigated. Macroscopic observables such as
beam emittance, lifetime and beam profiles are calculated. These are followed with de-
tailed studies of microscopic quantities such as the evolution of the variance at several
initial transverse amplitudes and single particle probability distribution functions. We
present evidence to show that the observed diffusion is anomalous and the dynamics
follows a non-Markovian continuous time random walk process. We derive a modified
master equation to replace the Chapman-Kolmogorov equation in action-angle space
and a fractional diffusion equation to describe the densityevolution for this class of
processes.

1 Introduction

Diffusion of particle beams due to nonlinear fields is often amajor source of emittance
growth and beam loss in an accelerator. Measurements of diffusion coefficients have been
reported from several hadron accelerators [1, 2, 3]. The diffusion equation was also used to
explain the change in beam lifetime following the failure ofa separator during a Tevatron
store [4]. In collision mode the beam-beam interactions areusually the dominant nonlin-
earity. Diffusion coefficients in the absence of low order resonances have been calculated
for head-on interactions [5] and for long-range interactions [6]. Diffusion due to nonlinear
resonances is more complex and the study of this phenomenon has a long history, see e.g
[7, 8, 9, 10, 11]. Resonances when modulated, either by dynamical effects such as synchro-
betatron coupling or due to ripple in magnet currents, can sweep across phase space and
transport particles to large amplitudes [12].

In this article we will study the nature of the diffusion process due to synchro-betatron
resonances driven by beam-beam interactions with a crossing angle. This was first inves-
tigated at the DORIS collider [13] and has since been observed at other colliders. Our
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aim is to establish the correct statistical mechanical model that describes the evolution of
the beam density. We examine the possibility that the diffusion process is anomalous with
detailed tracking simulations and derive a master equationand a related fractional diffu-
sion equation that may describe the transport process. A preliminary version of this study
was reported in [14]. An example of anomalous diffusion observed in particle beams as a
consequence of rf phase modulation was reported in [15]. Anomalous diffusion processes
have been reported in several areas of physics including plasma turbulence [16], and in the
motion of laser cooled atoms on a lattice [17].

2 Synchro-betatron resonances due to crossing angles

Synchro-betatron resonances (SBRs) due to beam-beam interactions at a crossing angle
are convenient to study resonantly driven amplitude growthfor several reasons. At large
amplitudes, the non-linear force vanishes, hence particleexcursions do not go to arbitrarily
large amplitudes which is not the case for resonances due to multipole nonlinearities. This
removes numerical instabilities and also allows the entirebeam to be probed for the particle
dynamics. Another advantage is that the resonances can be studied in one transverse plane
since these resonances are driven by energy pumped from the longitudinal plane to the
transverse plane with very little impact on the longitudinal dynamics.

When beams collide at an angle, the transverse distance of a test particle from the center
of the opposing bunch depends on the longitudinal position of the particle. Consequently
synchrotron oscillations of the particle couple to the transverse beam-beam force leading
to excitation of synchro-betatron resonances. Since the beam-beam force goes to zero at
large transverse separations, the effects of these resonances are experienced by particles
only within a certain range of transverse amplitudes.

For simplicity, we choose the resonances to be in only one transverse plane, here the
horizontal plane. In order to observe effects over relatively short computation times, we
choose low order resonances. The tunes we choose are unrealistic for operating colliders
but it is likely that the dynamics near high order resonancesis similar but occurs over a
longer time scale.

Linear motion and the beam-beam interactions can be described by the equations of
motion resulting from the Hamiltonian

H = νxJx +νyJy +νsJs +
NIP

∑
i

Ui(x,y,s)δP(φ −φi) (1)

where(νx,νy,νs) are the tunes, and(Jx,Jy,Js) are the actions.U(x,y,s) is the beam-beam
potential,δP is the periodic delta function,φ is the azimuthal coordinate and the sum
extends over the numberNIP of interaction points. Assuming Gaussian distributions inall
three planes, crossing angles of(2φx,2φy) in the horizontal and vertical planes respectively,
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the beam-beam potential for colliding proton bunches can bewritten as

U(x,y,s)=−
Nbrp

γp

∫ ∞

0

dq

[(2σ2
x +q)(2σ2

y +q)]1/2

(

1−exp[−
(x+ ssin2φx)

2

(2σ2
x +q)

−
(y+ ssin2φy)

2

(2σ2
y +q)

]

)

(2)

whereNb is the bunch intensity of the opposing bunch,rp is the classical proton radius,
γp is the proton energy in units of its rest mass andσx,σy are the rms beams sizes of the
opposing beam at the interaction point (IP). The potential can be expanded as a Fourier
series

U(x,y,s) = ∑
mx,my,ms,p

Umx,my,ms exp[i(mxψx +myψy +msψs − pφ)] (3)

This potential can excite synchro-betatron resonances given by the resonance condition
mxνx + myνy + msνs = p where (mx,my,ms, p) are integers. It can be shown from the
structure of the Fourier harmonicsUmx,my,ms that they are non-zero only when the sum
mx +my +ms is even. The Fourier harmonics can also be used to calculate the tune shifts
with amplitude and the resonance driving terms, as was done in [18]. As one example, we
write down the zero transverse amplitude tune shift for round beams. This tune shift now
depends on the longitudinal oscillation amplitudeasσs as

∆νx(ax = 0,ay = 0,as) = ξ e−τ [I0(τ)− I1(τ)(1+
1
2

(ashx)
2

τ
)] (4)

and a similar expression for∆νy. Hereξ = Nbrp/(4πεN) is the usual beam-beam param-
eter, (axσx,ayσy) are the transverse amplitudes of the particle,I0, I1 are modified Bessel
functions and the other dimensionless parameters are

τ =
1
4

a2
s (h

2
x +h2

y), hx =
σs

σx
sin2φx, hy =

σs

σy
sin2φy

As a consequence, only those zero transverse amplitude particles with zero longitudinal
amplitudeas experience the full beam-beam tune shiftξ . Particles with non-zero amplitude
as experience a smaller tune shift.

Since the LHC employs crossing angles in its collision scheme, we will use the LHC
beam parameters in the simulations reported here. As in the LHC, the crossing angle is in
the horizontal plane at one IP and in the vertical plane at thesecond IP. We consider reso-
nances excited in the horizontal plane only, so they are of the formmxνx +msνs = p with
mx +ms even. In our model the only sources of tune spread are the beam-beam interactions.
These interactions between protons lowers the betatron tunes at small amplitudes. We
choose the large amplitude tunes, i.e. the tunes with only the linear lattice, to satisfy one of
the SBR resonance conditions. Having chosen a particular resonancemxνx +musνs = p to
be satisfied by the bare lattice tunes, the tunes inside the bunch are determined by the beam-
beam parameterξ , the synchrotron tuneνs and the amplitudes(ax,ay,as) of the particle.
The nominal LHC horizontal tune is 0.31 at collision, so we searched among the following
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Table 1: Table of basic parameters in simulation model. Resonance I is 2(3νx −2νs) = 2,
resonance II is 4νx −2νs = 1.

Beam parameter Value
Energy [TeV] 7.0

Bunch Intensity 1.1×1011

σx,σy [µm] 16.6, 16.6
σs [cm] 7.5

Rf voltage [MV] 16
Crossing angles [µrad] 300
Beam-beam parameter 0.0034
Resonance I:(νx,νy) 0.3353, 0.32
Resonance II:(νx,νy) 0.2514, 0.32

resonances: 3νx±νs = 1, 2(3νx±2νs) = 2 as well as 2(4νx±νs) = 2 and 4νx±2νs = 1 to
find those that cause large growth of the emittance and beam tails. Given that the betatron
tune spread from head-on beam-beam interactions is about 0.007 and the small amplitude
synchrotron tune is∼0.002, the choices 2(3νx−2νs) = 2 and 4νx−2νs = 1 had the greatest
impact on the beam. With these choices, low amplitude particles are resonant with the third
and fourth order betatron resonances respectively, and thesynchrotron oscillations modu-
late these resonances leading to large amplitude growth. The other resonances are resonant
at larger amplitudes and consequently have a smaller impacton the bunch. The bare lattice
(which become the large amplitude) betatron tunes corresponding to these resonances are
shown in Table 1. Some of these parameters may be slightly different from the present
LHC design values, e.g the LHC design value of the crossing angle is 285µrad.

3 Simulations of beam variables

In this section we will describe multi-particle simulationresults. These will include the
emittance growth, evolution of beam profiles, amplitude growth at different initial ampli-
tudes, and also the growth of the variance in action at these initial amplitudes. This will
allow us to probe both the macroscopic and microscopic beam behaviour.

The simulations were performed with a simple numerical model consisting of six di-
mensional linear transport between the two collision points, a sinusoidal longitudinal map
through an rf cavity and weak-strong beam-beam interactions at the two IPs. The beam-
beam interactions occur with a horizontal crossing angle atone IP and a vertical crossing
angle at the second IP. The strong beam was assumed to have a Gaussian distribution in all
three planes. Magnetic nonlinearities are not included, both to keep the model as simple as
possible and also to avoid particle amplitudes from growingexponentially fast far from the
beam core. Limiting amplitude growth to finite values allowsus to keep all particles in the
distribution and hence study the growth of the beam tails with good statistics.
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Figure 1: (color) Emittance growth vs turns with tunes on thesynchro-betatron resonances.
Left: horizontal emittance growth, Right: vertical emittance growth. The power law fits
and the exponents for the fits are also shown.

3.1 Emittance growth and lifetimes

Emittance growth was calculated by evolving ensembles ofN particles (5000≤N ≤ 20000)
starting with Gaussian distributions in all planes. Typically 10,000 particles sufficed to
obtain results that did not change much with a larger number of particles. The calculated
emittance was the rms emittance, e.g.εx = [〈x2〉〈x

′2〉 − 〈xx′〉2]1/2. Figure 1 shows the
emittance growth with 20,000 particles on the two resonances. We find that the growth
follows a simple power law, the fits are also shown in the figure. We observe that the
horizontal emittance growth after 106 turns is more than 2.5 times larger on the 2(3νx −
2νs) = 2 resonance than on the 4νx −2νs = 1 resonance. The vertical emittance growth is
much smaller than the horizontal, about a factor of five smaller for the first resonance and
it is practically zero for the second resonance.

By imposing a finite aperture restriction, we can find the escape time needed by particles
to reach this aperture. This has been calculated for severaldifferent apertures and for both
resonances. Apertures were placed from 5σ to 10σ at intervals of 1σ . On the 2(3νx −
2νs) = 2 resonance, we find that about 7% of particles reach 8σ , a handful reach 9σ and
none reach 10σ . On the 4νx −2νs = 1 resonance, about 4% of particles reach 6σ , a few
reach 7σ and none reach 8σ . The amplitude distribution of the particles reaching 8σ on the
first resonance and of the particles reaching 6σ on the second resonance are shown in the
top plots of Fig 2. The initial distribution in each case was aGaussian with 40,000 particles.
On the 2(3νx−2νs) = 2 resonance, the maximum of the amplitude distribution occurs close
to 1.5σ - an amplitude close to the lower edge of the resonance islands, shown later in Fig
10. The minimum amplitude that reaches the aperture is 0.25σ . On the 4νx − 2νs = 1
resonance, the corresponding peak in the amplitude distribution is close to 1.8σ , also at the
lower edge of the resonance islands seen in Fig. 11. The minimum amplitude that reaches
the aperture on this resonance is 0.9σ .

The average escape time in the simulation may be interpretedas representing the beam
lifetime. The bottom plot in Fig. 2 shows the average escape time (calculated with 40,000
particles) as a function of the aperture amplitude for both resonances. The average es-
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Figure 2: Top: Distribution of amplitudes reaching an aperture of 8σ on the 2(3νx−2νs) =
2 resonance (left) and an aperture of 6σ on the 4νx −2νs = 1 resonance (right). In both
cases, the initial distribution was a Gaussian with 40,000 particles. Bottom (color): Average
escape time for the two resonances at different apertures.

cape time with 20,000 particles yielded similar values showing that these numbers have
converged to stable values. The average escape time increases by an order of magni-
tude or more for each increase in aperture by 1σ . The average escape time at 8σ on the
2(3νx −2νs) = 2 resonance is about the same as at 6σ on the 4νx − 2νs = 1 resonance.
At a fixed aperture, the differences in escape times between the two resonances increases
by about two orders of magnitude at 5 and 6σ and three orders of magnitude at 7σ . One
would expect this trend of increasing lifetimes to continuewith higher order resonances.

3.2 Beam profiles

The beam profiles were found for the same distributions and resonances. The left plot
in Fig 3 shows a mountain range view of the horizontal beam profiles (i.e. distribution
function of the horizontal position), initially and then atother intervals up to 106 turns with
tunes on the resonance 2(3νx −2νs) = 2. After the initial time, the subsequent horizontal
profiles develop long non-Gaussian tails which extend out to±̃8σ compared to the initial
Gaussian distribution which was limited to±3.5σ . The vertical beam profiles (not shown
here) however stayed Gaussian and close to the initial distribution. The right plot in this
figure shows the horizontal profiles but with tunes on resonance 4νx−2νs = 1. We observe
that in this case as well that the tails are non-Gaussian and extend out to about±6σ , not
quite as far as on the first resonance. Again there is very little change in the vertical profile.
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Figure 3: (color) Mountain range view of the horizontal beamprofile initially and at subse-
quent times. Particles were on the resonance 2(3νx −2νs) = 2 (left) and on the resonance
4νx −2νs = 1 (right).

We observe that the beam tails do not appear to change very much after the first 100,000
turns or so. It is most likely that the regions of enhanced diffusion are depleted within
these turns. The particles in the vicinity of the resonance islands are transported to larger
amplitudes quickly and are detuned from the resonance. The amplitudes to which they
move have much smaller diffusion, so the beam tails do not change much. As we will
see in the next subsection, the evolution in the beam core shows growth even after several
hundred thousand turns. However these particles do not migrate to the tails during the time
duration followed. Thus we continue to observe emittance growth.

In order to find distributions that can best fit the non-Gaussian tails, we first look to
the Central Limit Theorem (CLT) which explains the ubiquityof the Gaussian distribution.
This powerful theorem states that the distribution of a sum of a sequence of random, iden-
tically distributed and independent variable with finite mean and second moment tends to
a Gaussian distribution in the limit that the number in the sequence approaches infinity.
Generalizing the CLT by dropping the requirement of a finite second moment leads to the
family of Levy stable distributions [20]. For applicationsin beam dynamics, these distri-
butions will still have a finite second moment because they donot extend to infinity but are
truncated at the beam pipe or the closest physical apertures.

Levy stable distribution functions are defined by an inverseFourier transform of a
stretched exponentially decaying function in Fourier space

Lα(z) =
1

2π

∫ ∞

−∞
exp[−izk−|k|α ]dk, 0 < α < 2 (5)

There is no known closed form expression for arbitrary values ofα. Special cases include:
the Lorentz distributionL1(z) while L2(z) is the Gaussian distribution. There are more
general asymmetric versions of the Levy stable distribution with additional parameters but
we shall not need them here. Some basic properties of these functions are [21]

• These functions are normalized :
∫ ∞
−∞ dzLα(z) = 1

• They are even functions :Lα(−z) = Lα(z)
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Figure 4: (color) The final horizontal profile and a fit (blue) with a Levy stable distribution
Lα . Left: Resonance 2(3νx −2νs) = 2 andα = 0.95. Right: Resonance 4νx −2νs = 1 and
α = 1.3.

• At z = 0, Lα(0) = 1
πα Γ( 1

α ), which increases rapidly whenα → 0.

• At large values ofz, the distributions decay as

lim
z→∞

Lα(z) ∼
1
π

sin(
1
2

πα)
Γ(1+α)

|z|1+α

We find that the non-Gaussian horizontal profiles can be fit by these Levy stable dis-
tributionsLα . The left plot in Fig. 4 shows the fit of the final horizontal profile for the
resonance 2(3νx−2νs) = 2 with a Levy stable distribution with parameterα = 0.95. This
profile is narrower than a Lorentzian and decays at largex as|x|−1.95. The right plot in this
figure shows the final distribution on the resonance 4νx −2νs = 1 can also be fit by a Levy
stable distribution with a larger central width and corresponding toα = 1.3. This profile is
wider than a Lorentzian and decays at largex as|x|−2.3. The Levy stable distributions were
generated with a Mathematica package [19].

It is known [22] that the Levy stable distributions serve as Green’s functions to frac-
tional diffusion equations for a densityρ(x, t) of the type

∂
∂ t

ρ(x, t) = χ −∞Dα
x ρ(x, t) (6)

whereχ is a constant diffusion coefficient and−∞Dα
x is the Riemann-Liouville fractional

space derivative of orderα given by,

−∞Dα
x ρ =

1
Γ(2−α)

∂ 2

∂x2

∫ x

−∞

ρ(x′)
(x− x′)α−1dx′ (7)

The solution of the fractional diffusion equation above is

ρ(x, t) =

∫ ∞

−∞
Lα(z)ρ0(x− (χt)1/αz)dz (8)

whereρ0(x) is the initial density. Levy stable distributions have alsobeen shown to be so-
lutions of other fractional diffusion equations [23]. There is no reason to believe that either
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Figure 5: (color) Plots of the initial (red) and final (blue) beam distributions in the hori-
zontal plane at the resonance 2(3νx −2νs) = 2 (left) and resonance 4νx −2νs = 1 (right)
respectively. Initially 4000 particles each were placed athorizontal amplitudes from 0.5
to 4σ in steps of 0.5σ . The vertical amplitude was kept constant at 0.1σ . In the plots the
vertical scale has been truncated to 400 in order to show clearly the particle numbers in the
final distribution at large amplitudes.

Equation (6) or of the type in reference [23] are appropriatefor our problem. However the
fact that the long time beam profiles are described by these Levy distributions is our first
indication that the amplitude growth process may be described by an appropriate fractional
diffusion equation rather than the regular diffusion equation. In Appendix A we derive a
different fractional diffusion equation that may describethe dynamics observed here.

3.3 Growth at individual amplitudes

We now take a closer look inside the beam distribution to determine how the amplitude
growth changes with amplitude. Instead of a Gaussian distribution in phase space, we
consider delta function distributions in action. We selecta discrete number of horizontal
actions and at each action we place 4000 particles uniformlydistributed in angle. The
vertical amplitude was kept constant at 0.1σ for all particles. The initial distribution in
transverse action angle space can be written as

ρ(Jx,θx,Jy,θy) = δ (Jy − J0.1)P(θx)P(θy)∑
i

δ (Jx − Ji) (9)

whereJ0.1 is the action at an amplitude of 0.1σ , P(θx) is a uniform distribution in the
horizontal angles etc. The initial longitudinal variableswere chosen to be the same for all
particles:z = 1σs, δ p/p = 1σp in these simulations. We let these distributions evolve and
record the final distribution in amplitude after 106 turns. The left plot in Fig 5 shows the
initial (red) and final (blue) distributions for resonance I. We observe that particles at 0.5σ
stay close to their initial amplitude. At 1σ , many particles have moved to larger amplitudes
but a sizable fraction stay in their original neighbourhood. This shows a large variation
in final amplitude depending on their initial angle or sensitivity to their initial conditions.
It suggests that motion in the neighbourhood of 1σ could correspond to bounded chaos.
At amplitudes of 1.5σ and higher, the vast majority of particles have migrated to larger
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Figure 6: (color) Variance in the horizontal actions over time at tunes corresponding to the
resonances 2(3νx−2νs) = 2(left) and 4νx−2νs = 1 (right). Also shown are monomial fits
to the data. Note that the variances are plotted on a logarithmic scale. All variances are
zero initially but the zero is suppressed here.

amplitudes up to 8σ and depleted the initially populated regions. There is a broad local
maxima in the final distributions at∼ 7σ . The right plot in Fig. 5 shows the corresponding
results for resonance II. The results are qualitatively similar with some differences. The
initial amplitude with large variation in final amplitude iscloser to 2σ and the largest
amplitude reached is about 7σ . On this resonance there remain local spikes at 2.5 and 3σ
showing that diffusion at these amplitudes is weaker than inthe first resonance.

3.4 Variance of the action and diffusion type

We now examine the diffusion from individual amplitudes. Inregular diffusion the variance
of the diffusing quantity, here the action, grows linearly with time which allows one to
define time independent diffusion coefficientsD(J) = 〈(∆J)2〉/∆t. We check the validity
of this assumption for the beam-beam driven SBRs. using the same initial distributions as
used in Fig 5. Variances are calculated over particles at thesame initial action. Figure 6
shows the growth in the variance of the horizontal action at several initial actions for both
resonances. The vertical amplitude was constant aty = 0.1σ . Initially the variance is zero
at all actions but then grows at different rates depending onthe action. The growth in the
variance is not linear at any action. In most cases there is a sharp initial transient growth
which is followed by a slower long term growth. This long termgrowth can be modeled
(again in most cases) by a power law behavior of the form

〈(∆Jx)
2〉 ∼Cxt

px, 〈(∆Jy)
2〉 ∼Cyt

py (10)

where the coefficients(Cx,Cy) and the powers(px, py) depend on the initial action. Ex-
ponents less than 1 indicate sub-diffusive behavior while exponents greater than 1 imply
super-diffusive motion Figure 6 also shows the fits with thispower law. Growth of the
variance in the vertical action can also be fit by a single power law with small values of
(Cy, py) showing that there is no appreciable diffusion in that plane. On the resonance
2(3νx−2νs) = 2, there is significant growth in the action at amplitudes of 2and 2.5σ com-
pared to neighboring actions both lower and higher. The exception to the single power law
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fit occurs atx = 1σ where the variance stays nearly constant after the initial transient and
then after about 400,000 turns grows by an order of magnitudeover the next 600,000 turns
but with oscillations in the variance. These oscillations occur because of the large sensi-
tivity to the initial angle at this amplitude. The oscillations decrease significantly when
the number of particles at the same initial action is increased from 4000 to 20000 parti-
cles, which results in a more complete sampling of the initial angle. Simulations show
that this greater sensitivity to the initial angle is also present at amplitudes in the range
1.0σ ≤ x ≤ 1.3σ with y = 0.1σ . The fits to a power law in this zone are applied after the
variance starts to grow rapidly but with 20000 particles. The average action with initial
|x|= 1.0σ grows about 10% after 106 turns while the average action with initial|x|= 1.5σ
grows by about a factor of two over this time. So the narrow zone around|x| = 1.0σ
corresponds to a zone of bounded chaos.

At the resonance 4νx − 2νs = 1, the growth in variance is largest in the rangex =
2.5−3σ and drops for both smaller and larger initial actions. The large oscillations in the
variance occur in a range aroundx = 2.0σ and again these oscillations are reduced when
the number of particles is increased from 4000 to 20,000. Forthis resonance, the zone
around|x| = 2.0σ is a zone of bounded chaos. Similar behaviour is seen at othervalues of
y but the width of the zone of bounded chaos changes.

The exponents in the power laws were calculated for several values of the horizontal
amplitude and for different vertical initial amplitudes. Fit 7 shows the exponents for both
resonances. On the resonance 2(3νx −2νs) = 2 there is a spike in the exponent to values
well above 1 in the regions of bounded chaos fory = 0.1,0.5σ suggesting super-diffusive
behavior. Above the zone of bounded chaos, the exponent falls well below 1 suggesting
sub-diffusive behavior. Aty = 1σ the exponent stays well below 1 for allx showing that
zones of bounded chaos have disappeared. On the 4νx −2νs = 1 resonance, the exponent
rises above 1only in a narrow zone aroundx = 2σ at y = 0.1σ . At y = 0.5σ the exponents
stay well below 1 at allx with a small spike atx = 2σ . The motion is sub-diffusive at all
x values studied wheny = 1σ . Since the super-diffusive regions are narrow, it is possible
that they may appear for|y| ≥ 1σ when the motion is studied with a finer resolution or even
when the longitudinal variables are changed. We remark thatwe have observed here three
different signatures of bounded chaos: large variations infinal amplitude when starting
from the same initial amplitude (seen in Fig 5), large oscillations in the action variance
over time (seen in Fig. 6 and a spike in the power law for the growth of the variance (seen
in Fig. 7). These signatures apply to an ensemble of particles at the same amplitude but
different initial angle as opposed to the Lyapunov exponentcriterion which is applied to a
pair of particles that are initially infinitesimally close.

The picture that emerges is that near synchro-betatron resonances, phase space is di-
vided into several zones. At small amplitudes there is no diffusion. At larger amplitudes
there is a zone of bounded chaos with super-diffusive motion. The next zone outward in
phase space is wider with sub-diffusive motion. Finally at even larger amplitudes, the mo-
tion becomes linear again and consequently there is no diffusion. Fig. 8 shows a qualitative
sketch of these different zones. The width of the super-diffusive zone with bounded chaos
depends on the resonance, on the amplitude of the orthogonaltransverse amplitude and on
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Figure 7: (color) Exponentpx of time in the power law fits of the horizontal action variance
vs the initial horizontal amplitude for different initial values of the vertical amplitude. The
left figure corresponds to the resonances 2(3νx −2νs) = 2 and the right to the resonance
4νx −2νs = 1. The exponent spikes above 1 in a very narrow range of horizontal ampli-
tudes. Exponent values below 1 indicate sub-diffusive behavior while those above indicate
super-diffusive behaviour.

the values of the longitudinal variables.

The fact that the sub-diffusive regions seem to be dominant in this perturbed Hamilto-
nian system should not be unexpected due to the existence of hyperbolic fixed points and
the existence of perturbed KAM tori. These fixed points and tori lead to orbits which stay in
their vicinity for long time periods and consequently to slower growth. Similar phenomena
have been reported for the standard map by Balescu [24].

4 Statistics of single particle behavior

We saw in the previous section that in most regions of phase space, the variance grows
slower than linearly with time. If we define an instantaneousor ’running’ diffusion coef-
ficient [24] asDJx

= (1/2)∂ 〈∆J2
x 〉/∂ t, then this coefficient would be time dependent and

would vanish in the very long time limit. Near both resonances we did not observe any
zone of regular diffusion with constant diffusion coefficients. We also saw that the beam
profile was given by a Levy stable distribution which is knownto be the solution of a frac-
tional diffusion equation. These suggest that the dynamicsnear these resonances cannot
be described by the regular diffusion equation but instead that the diffusion is anomalous
which needs a different diffusion equation. In order to testthis possibility in more detail,
we will examine the validity of the assumptions behind the regular diffusion equation.

4.1 Continuous Time Random Walks

The regular diffusion equation arises after assuming that the particle dynamics can be mod-
eled as a classical random walk following a Markov process. This implies that particle
jumps occur at regular time intervals and there is a well defined time scale such that events
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Sub-diffusion

Super-diffusion

No diffusion

Figure 8: (color) Qualitative sketch of phase space dividedinto zones of no diffusion, super-
diffusion and sub-diffusion when the dynamics is dominatedby a beam-beam synchro-
betatron resonance.

separated in time by longer than this time scale are uncorrelated. It then follows that the
particle density is governed by the well known Chapman-Kolmogorov master equation.
From this master equation and a few more assumptions (e.g. onthe smallness of the dis-
placements etc.) the regular diffusion equation follows. See Appendix A for a sketch of
this derivation.

A well known alternative to the standard random walk pictureis the Continuous Time
Random Walk (CTRW) model introduced by Montroll and Weiss [25] to consider processes
where both the times at which jumps occur as well as the sizes of the jumps in space are
random functions. A review of CTRW and connections to fractional diffusion equations
may be found in [26].

A general dynamical process may not have a characteristic time scale. In those cases a
Markov description may not be applicable. The CTRW model introduces the concepts of a
probability distributionw for the waiting times before a jump occurs and a probability dis-
tributionΨ for the size of a jump In beam dynamics there is no diffusion when the motion
is linear and the usual Courant-Snyder actions are conserved. Consequently it makes sense
to define the jumps in action space when the motion is nonlinear and diffusive. Hence we
definew(t,J)∆t to be the probability that a particle waits for a time betweent andt +∆t at
actionJ before making a jump. and defineΨ(∆J;J, t)∆J to be the probability of making a
jump by∆J at the actionJ at time t. These distributions are normalized, i.e.

∫

w(t,J)dt = 1 =
∫

Ψ(J′;J, t)dJ′ (11)

The concept of a waiting time endows the system with memory. The CTRW model reduces
to the classical random walk model on which the regular diffusion equation is based, when
the waiting time follows an exponential behavior in timee−t/τ with a characteristic time
scaleτ.

These waiting time and jump size distributions can be used inmany cases to determine
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Figure 9: Time series of the horizontal amplitude withx = 1.5σ ,y = 1.5σ . Left plot: We
see the first large jump in the amplitude from∼ 1.5σ to∼ 6.5σ occurs after 140,000 turns.
Middle plot: This zoomed in plot shows sequences of jumps from small to large amplitudes
and back interspersed with intermittent periods of small amplitude changes. Right: The last
200,000 turns during an evolution over 2×106 turns. Here we see excursions between 1 to
8 σ .

the evolution followed by the density distributionρ(J, t). The canonical CTRW model
assumes a power law waiting time distribution, a Gaussian for the jump size distribution
and a constant diffusion coefficient. These lead to a fractional diffusion equation for the
density [26]. In our case the dynamics near resonances is sufficiently complicated that we
need to establish the evolution equation for the density from first principles. We therefore
need to determine the forms of the jump size distribution andthe waiting time distributions
from the dynamics. Simulations discussed in the rest of thissection are used to extract
these distributions.

A check of the whether the CTRW model may be applicable here can be done by ex-
amining the time series of single particles. Fig 9 shows one example of a time series of the
amplitude

√

2βxJx for a single particle on the resonance 2(3νx = 2νs) = 2. The left plot
shows that a particle may perform small amplitude quasi-periodic oscillations for a while
before a major qualitative change occurs. The middle and theright plots show that step
sizes can be large (severalσ ), of varying amplitude, and there are intermittent sequences
of varying duration where there are smaller steps. The time dependent behaviour of this
sequence and the non-locality of the changes establish thatthis is a process with a distri-
bution of waiting times and a distribution of action step sizes, the key ingredients of the
CTRW model.

4.2 Jump size distributions

We now calculate the jump size distributions by following a single particle for 106 turns
and find the changes∆x,∆Jx in position and action per turn. Fig. 10 shows the phase space,
and jump distributions of∆x,∆Jx on the resonance 2(3νx −2νs) = 2 with initial values of
x = (0.2,2,8)σ . At the smallest initial positionx0 = 0.2σ , the phase space is a distorted
ellipse with no trace of the resonance island; motion here isquasi-linear. The plot for the
distribution function of∆x also has the distribution function for a periodic function shown
in dotted lines. When the argument of a periodic function like sine or cosine is sampled
from a random distribution, the distribution function for the periodic functionf has the
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Figure 10: Phase space (left), jump size distribution inx (middle) and jump size distribution
in actionJx (right) on the resonance 2(3νx −2νs) = 2. The initial value ofx changes going
from top to bottom asx = (0.2,2.0,8.0)σ . The initial value ofy = 0.1σ is the same in all
these plots. The distribution in∆Jx is plotted on a semi-log scale and the abscissa is in units
of ∆Jx/Jσ whereJσ is the action at 1σx.

form

p( f ) ∼
1

√

1− f 2
, | f | ≤ 1 (12)

The distribution function has local maxima wherever the function itself becomes stationary,
so that many more points are sampled from the neighbourhood of these stationary points.
Since the motion at small and large amplitudes is quasi-periodic in our model, it is to be
expected that the distribution in∆x is close to that of a periodic function. The distribution
function for ∆Jx is plotted on a semi-log scale and shown as discrete points, for greater
clarity. At x0 = 0.2σ , the distribution for∆Jx lies on a single curve but not given by any
simple expression. As the particle’s initial position increases to 2σ , the nonlinearity of
the beam-beam force manifests and we see resonance islands in phase space and large
excursions. The distribution function for∆x undergoes a qualitative change to resembling
a parabolic curve but with a dip in the center and with peaks close to the center. The
distribution function for∆Jx now falls on two separate curves. Similar distributions for
∆x,∆Jx are seen for initial particle amplitudes in the range 1.5σ ≤ |x0| ≤ 6.5σ . At x0 = 8σ ,
the phase space returns to a distorted ellipse with considerable smear, and the distribution
functions also resemble those seen atx0 = 0.2σ .

Fig. 11 shows similar plots on the resonance 4νx −2νs = 1 with initial values ofx =
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Figure 11: Similar plots as in Fig 10 but on the resonance 4νx − 2νs = 1. From top to
bottom, the different initial values ofx = (0.5,5,8)σ . The initial value ofy = 0.1σ is the
same in all cases.

(0.5,3.5,8)σ . Again, we see a qualitative change in the distribution functions when the
motion is strongly nonlinear in the presence of the resonance islands. The shapes of the
distributions in∆x are similar to those seen for the previous resonance and the distribution
of ∆Jx also lies on separate curves at intermediate amplitudes. These suggest that there is a
universal character to the jump distributions which mirrors the behavior in phase space.

4.3 Waiting time distributions

The waiting time distribution is the important distribution that determines the nature of the
diffusion process. As remarked earlier, a waiting time distribution that follows an exponen-
tial law reduces to a Markov process, otherwise the process is non-Markovian. The waiting
time for each initial amplitude is found here by tracking a particle at that amplitude for 106

turns. The phase space region in action angle coordinates that is visited by the particle is
divided into different zones and the time that the particle stays in the zone before leaving
is one instance of the waiting time. The choice of the width ofthe zone is somewhat arbi-
trary since there is no dynamics dependent action scale which is applicable to all of phase
space. For example, the resonance width is not relevant at small or large amplitudes and if
there were multiple resonances, there would be multiple widths. We therefore calculated
the waiting time distribution twice, once with a chosen width such that there was enough
statistics in each zone and the second time with twice the width. In most cases we found
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that the parameters of the distribution change by less than 10%; we take this to be a sign of
convergence of the distribution. We find that the exponential function is not a good fit to the
distribution for either resonance. The results for a fit to a power law distribution are shown
in Figure 12. The distributions are plotted on a log-log scale for several initial amplitudes
where there is significant amplitude growth. On the 2(3νx −2νs) = 2 resonance, most of
the points (with the exception of the single occurrence events with long waiting times) lie
on straight lines showing that a power law is a reasonable fit.The power law exponents for
the different amplitudes are close. For the amplitudes shown in this figure, the waiting law
distributions are

w(t) ∼ t−α , 2.4≤ α ≤ 2.7 (13)

On the 4νx −2νs = 1 resonance, the waiting time distribution can also be fit by apower
law distribution but the range of variation in the exponentα is larger: 1.4≤ α ≤ 2.7. The
greater variability in the exponent is expected to have an impact of the dependence of the
diffusion rate at different amplitudes on this resonance.

5 Fractional diffusion equation

Since the waiting time distribution suggests that the transport near resonances is non-
Markovian, we need to establish an alternative to the regular diffusion equation. For a
Markov process, the regular diffusion equation is obtainedfrom the Chapman-Kolmogorov
master equation, a derivation is sketched in Appendix A. In Appendix A we also derive
a different master equation using general jump size and waiting time distributions for a
CTRW process in action space following a method outlined in [27]. The master equation
for the density in action angle space that we obtain is

∂
∂ t

ρ(J,θ)=
1
τ

∫ ∫

d∆Jd∆θΨ(J−∆J,θ −∆θ ;∆J,∆θ)Ltρ(J−∆J,θ −∆θ , t)−
1
τ

Ltρ(J,θ , t)

(14)
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whereLt is an integral operator given by

1
τ

Ltρ(J,θ ; t) = L
−1
[

sŵ(s;J,θ)

1− ŵ(s;J,θ)
ρ̂(J,θ ,s)

]

(15)

HereL −1 is an inverse Laplace transform,τ is a time parameter in the waiting time dis-
tributionw(t,J), ŵ(s;J), ρ̂(s;J) are the Laplace transforms of the waiting time distribution
and the density respectively. In the Appendix we then show that expanding this master
equation in a Taylor series in the same manner as is done for the Chapman-Kolmogorov
equation, the following fractional diffusion equation is obtained for a power law waiting
time distributionw(t,J) ∼ t−α(J)

∂ρ
∂ t

= ∑
k

∑
l

∂
∂Jk

[Dkl
∂

∂Jl
]

1
Γ(1−α(J))

[

∂
∂ t

∫ t

0
dt ′

ρ(J, t ′)

(t − t ′)α(J)

]

(16)

Here the exponentα depends on the actionJ which will be true in general andDkl are
action dependent diffusion coefficients, defined in the appendix. It remains to be verified
that this fractional diffusion equation describes the dynamics near resonances, as seen in
the particle tracking simulations. However, this diffusion equation has been derived under
general considerations of a CTRW process which the dynamicsnear the SBR resonance
appears to follow. Given the large variations in the diffusion coefficients, the solution
of this diffusion equation will likely require a special purpose numerical algorithm. The
density can then be used to calculate the beam lifetime and various moments such as the
emittance .

6 Discussion

We have studied the detailed transport process near two low order horizontal synchro-
betatron resonances driven by beam-beam interactions at a crossing angle. We found that
the horizontal beam profiles develop long beam tails. The horizontal beam distribution
evolves from an initially Gaussian distribution to a Levy stable distributions on both reso-
nances. The Levy stable distributions are solutions of simple fractional diffusion equations
which describe some anomalous diffusion processes. The evolution of the variance in ac-
tion at several initial values characterizes the nature of the diffusion in phase space. At
small amplitudes there is no diffusion, then there is a narrow region where the motion is
super-diffusive (the variance grows faster than linearly with time), followed by a broad
region where the motion is sub-diffusive (the variance grows slower than linearly with
time) and finally no diffusion at large amplitudes. The widthand the location of the super-
diffusive region depends on the resonance, the width is narrower for the weaker resonance.
This super-diffusive region is also marked by signatures ofbounded chaos and particles
do not experience large amplitude growth. For both resonances, this region is located at
the lower edge of the resonance islands. The broad sub-diffusive region abuts the super-
diffusive region and continues until about 5-6σ depending on the resonance. Here particles
do migrate to larger amplitudes. We do not observe regular diffusion anywhere in phase
space on either resonance with the particle distributions we used.
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The jump size distribution and the waiting time distribution, key ingredients of a con-
tinuous time random walk process, were found by analysis of single particle tracking data.
The jump size distributions for both resonances were similar - in the linear regions of phase
space, the distributions in∆x are close to the arcsine distribution while in the nonlinearre-
gions they have a more complex shape. The similarity of thesedistributions for the two
resonances suggests that these may be universal features near such resonances. When the
waiting time distributions follows an exponential law, thestochastic process is Markovian.
We find that the waiting time distribution follows instead a power law, again for both res-
onances. Since the process is non-Markovian, the regular diffusion equation cannot be
used to describe the evolution of the density. For a general CTRW process, we derived a
master equation in action-angle space which is applicable to processes with arbitrary jump
size and waiting time distributions. A fractional diffusion equation was derived from this
master equation. Numerical solutions of this diffusion equation will allow computations of
beam observables such as lifetimes and emittance growth.

This model can be tested against beam observations when anomalous diffusion is sus-
pected. Comparison of beam profiles with Levy stable distributions would be a first check.
Another indicator would be if the emittance of pencil beams grow nonlinearly with time.
This could then be followed by measurements of diffusion coefficients at different am-
plitudes, using them in the fractional diffusion equation and comparing the numerically
calculated emittance growth and beam lifetime with the measured values.

In this article we considered low order synchro-betatron resonances so as to observe
effects on a short time scale. Based on comparisons of the tworesonances studied here, we
expect that the physics at high order resonances (and hence more applicable to operational
accelerators) will be similar but on longer time scales. When multiple such resonances
are present simultaneously, the diffusion is likely to be anomalous but the phase space
dynamics will be more complicated. It is possible that the physics near space charge driven
resonances may be similar to that obtained here but that remains to be investigated.
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A Appendix: Regular and fractional diffusion equations

We briefly summarize the derivation of the diffusion equation in action-angle space. We
assume a Hamiltonian descriptionH(J,θ) which has been perturbed from an integrable
HamiltonianH0(J). Let Ψ(J,θ ;∆J,∆θ be the transition probability for the action-angle
variables to change from(J,θ) to (J+∆J,θ +∆θ) in time ∆t. The first major assumption
is that the dynamics is Markovian. For a Markov process, the particle density distribution
at timet +∆t only depends on its instantaneous state att and is independent of its previous
history provided∆t is longer than a characteristic timeτ. Under this assumption, the den-
sity ρ(J,θ , t) at timet +∆t can be found by summing over all possible transitions in time
∆t. This results in the Chapman-Kolmogorov equation for the density

ρ(J,θ , t +∆t) =
∫ ∫

ρ(J−∆J,θ −∆θ , t)Ψ(J−∆J,θ −∆θ ;∆J,∆θ)d(∆J)d(∆θ) (A.1)

HereΨ is the transition probability of jumps(∆J,∆θ). Further assumptions need to be
made including i)the angles evolve on a faster time scale than the actions and their corre-
lation decays rapidly, ii) the density in the long time limitis independent of the angle iii)
the transition probability can be factorized in the formΨ(J,θ ;∆J,∆θ) = ΨJ(J;∆J)δ (∆θ −
θ̇∆t) iv) the changes in action and angle∆J,∆θ are small during a time interval∆t. Ex-
panding the LHS and the RHS of Equation (A.1), keeping up to second order terms and
then taking the limit∆t → 0, we obtain the Fokker-Planck equation

∂ρ
∂ t

= −∇J · [Aρ]+∑
k

∑
l

∂ 2

∂Jk∂Jl
[Dklρ] (A.2)

where the driftA and diffusion coefficientsD are defined as

A(J) = lim
∆J→0,∆t→0

〈∆J〉
∆t

, Dkl(J) = lim
∆J→0,∆t→0

1
2

〈∆Jk∆Jl〉

∆t
, 〈∆J〉 ≡

∫

∆J ΨJ(J;∆J)dJ

(A.3)
Here∆t is understood as a time shorter than a time scale over which the density distribution
evolves but longer than the time over which angle correlations decay.

For Hamiltonian systems, there is a relation between the drift coefficient and the diffu-
sion coefficients [28, 29]

Ak =
1
2∑

l

∂
∂Jl

Dkl (A.4)

then the Fokker-Planck equation simplifies to the diffusionequation

∂ρ
∂ t

= ∑
k

∑
l

∂
∂Jk

[Dkl
∂ρ
∂Jl

] (A.5)

The assumptions of Markovian behavior and the smallness of the changes in action-angle
variables are crucial for the validity of this regular diffusion equation. If these assumptions
are invalid, then this diffusion equation may not be the right model for the density evolution.
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We now consider a more general master equation for a CTRW process in action angle
space with arbitrary jump size and waiting time distributions. We use a method outlined
in [27]. It uses two basic balance conditions: the first states that a change of density arises
from the difference in the incoming fluxΓ+(J,θ , t) and the outgoing fluxΓ−(J,θ , t).

∂
∂ t

ρ(J,θ) = Γ+(J,θ , t)−Γ−(J,θ , t) (A.6)

The second balance condition states that the influx is composed of the outflux of particles
from all other phase space locations to that location

Γ+(J,θ , t) =
∫ ∫

d∆J d∆θ Ψ(J−∆J,θ −∆θ ;∆J,∆θ)Γ−(J−∆J,θ −∆θ , t) (A.7)

The outflux at(J,θ , t) has contributions from particles that were present initially but left
after waiting for timet and those that arrived later before leaving

Γ−(J,θ , t) = w(t;J,θ)ρ(J,θ ,0)+

∫ t

0
w(t − t ′;J,θ)Γ+(J,θ , t ′)dt ′ (A.8)

Substituting Eq. (A.8) in Eq. (A.6) and taking the Laplace transform, we obtain for the
outflux

Γ−(J,θ , t) = L
−1
[

sŵ(s;J,θ)

1− ŵ(s;J,θ)
ρ̂(J,θ ,s)

]

≡
1
τ

Ltρ(J,θ ; t) (A.9)

Here ŵ(s;J,θ) and ρ̂(J,θ ,s) are the Laplace transforms ins space,τ is a relevant time
parameter in the waiting time distribution. andL −1 is the inverse Laplace transform. The
last equality in this equation defines the integral operatorLt . Substituting this back in Eq.
(A.6) and using Eq.(A.7) we obtain

∂
∂ t

ρ(J,θ)=
1
τ

∫ ∫

d∆Jd∆θΨ(J−∆J,θ −∆θ ;∆J,∆θ)Ltρ(J−∆J,θ −∆θ , t)−
1
τ

Ltρ(J,θ , t)

(A.10)
This is the modified master equation for the density.

Now we derive the modified diffusion equation from this master equation. We expand
the RHS of Eq.(A.10) in a Taylor series and keep up to second order terms. As before we
define the coefficients

A(J) = lim
∆J→0,

〈∆J〉
τ

, Dkl(J) = lim
∆J→0

1
2

〈∆Jk∆Jl〉

τ
(A.11)

We assume that the same relation as in Eq. (A.4) between the drift and diffusion coefficients
holds. Then we have as the modified diffusion equation

∂ρ
∂ t

=
1
τ ∑

k
∑

l

∂
∂Jk

[Dkl
∂

∂Jl
]Ltρ (A.12)

In cases where(1/τ)Ltρ = ρ , this is the regular diffusion equation.
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Consider now two examples of a waiting time distribution, first an exponential waiting
time

w(t) =
1
τ

exp[−
t
τ
], ⇒ ŵ(s) =

1
τ
(

1
s+1/τ

) (A.13)

The integral operator simplifies to

1
τ

Ltρ = L
−1[

sŵ(s)
1− ŵ(s)

ρ̂(J,s)] = ρ(J, t) (A.14)

i.e. the modified diffusion equation reduces to the regular diffusion equation.

Now consider a power law waiting time

w(t;J) =
1
τ
(

t
τ
)−α(J) (A.15)

Here we let the exponentα be action dependent. In the long time limitt → ∞ or equiva-
lently s → 0,

1
τ

Ltρ = Γ(1−α(J))L −1[sα(J)ρ̂(J,s)] = 0Dα(J)
t ρ(J, t) (A.16)

HereΓ is the Gamma function and0Dα(J)
t is a Riemann-Liouville fractional derivative in

time defined below. The diffusion equation forρ is

∂ρ
∂ t

=∑
k

∑
l

∂
∂Jk

[Dkl
∂

∂Jl
] 0Dα(J)

t ρ(J, t)

=∑
k

∑
l

∂
∂Jk

[Dkl
∂

∂Jl
]

1
Γ(1−α(J))

[

∂
∂ t

∫ t

0
dt ′

ρ(J, t ′)

(t − t ′)α(J)

]

(A.17)

This is a non-local in time (due to the waiting time distribution) integro-differential diffu-
sion equation for the density.
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